7.4.3 THE Y-INTERCEPT OF A LINE

Consider the straight line with equation $y=2 x+1$. To draw a sketch of the line, we must calculate some values.
$y=2 x+1$

Notice that when $x=0$ the value of y is 1 . So this line cuts the y-axis at $y=1$.
The general equation of a straight line is $y=m x+c$, where m is the gradient, and $y=c$ is the value where the line cuts the y-axis. This number c is called the intercept on the y-axis or y-intercept.

We are sometimes given the equation of a straight line in a different form. Suppose we have the equation $3 y-2 x=6$. We can use algebraic rearrangement to obtain an equation in the form
$y=m x+c:$
$3 y-2 x=6$,
$3 y=2 x+6$,
$y=\frac{2}{3} x+2$

So now the equation is in its standard form, and we can see that the gradient is $\frac{2}{3}$ and the intercept value on the y -axis is 2 .

SELF-ASSESSMENT ACTIVITY

1. Determine the gradient and y-intercept for each of the straight lines in the table below.

Equation	Gradient	y-intercept
$y=3 x+2$		
$y=5 x-2$		
$y=-2 x+4$		
$y=12 x$		
$y=\frac{1}{2}-\frac{2}{3}$		
$2 y-10 x=8$		
$x+y+1=0$		

2. Find the equation of the lines described below (give the equation in the form $y=m x+c$:
(a) gradient 5, y-intercept 3;
(b) gradient $-2, y$-intercept -1 ;
(c) gradient 3 , passing through the origin;
(d) gradient $\frac{1}{3}$ passing through $(0,1)$;
(e) gradient $-\frac{3}{4}, y$-intercept $\frac{1}{2}$
