7.4.3 THE Y-INTERCEPT OF A LINE

Consider the straight line with equation y = 2x + 1. To draw a sketch of the line, we must calculate some values.

$$y = 2x + 1$$

x	у
0	1
1	3
2	5
3	7

Notice that when x = 0 the value of y is 1. So this line cuts the y-axis at y = 1.

The general equation of a straight line is y = mx + c, where m is the gradient, and y = c is the value where the line cuts the y-axis. This number c is called the **intercept** on the y-axis or **y-intercept**.

We are sometimes given the equation of a straight line in a different form. Suppose we have the equation 3y - 2x = 6. We can use algebraic rearrangement to obtain an equation in the form

y = mx + c: 3y - 2x = 6, 3y = 2x + 6, $y = \frac{2}{3}x + 2$ So now the equation is in its standard form, and we can see that the gradient is $\frac{2}{3}$ and the intercept value on the y-axis is 2.

1. Determine the gradient and y-intercept for each of the straight lines in the table below.

Equation	Gradient	y-intercept
$\mathbf{y} = 3\mathbf{x} + 2$		
$\mathbf{y} = 5\mathbf{x} - 2$		
$\mathbf{y} = -2\mathbf{x} + 4$		
y = 12x		
$y = \frac{1}{2} - \frac{2}{3}$		
2 y - 10x = 8		
$\mathbf{x} + \mathbf{y} + 1 = 0$		

- 2. Find the equation of the lines described below (give the equation in the form y = mx + c:
 - (a) gradient 5, y-intercept 3;
 - (b) gradient -2, y-intercept -1;
 - (c) gradient 3, passing through the origin;
 - (d) gradient $\frac{1}{3}$ passing through (0,1);
 - (e) gradient $-\frac{3}{4}$, y-intercept $\frac{1}{2}$