7.3.1 DEFINITION

The slope of a line is a number that measures its "steepness", usually denoted by the letter m . It is the change in y for a unit change in x along the line.

Given two points (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$, the formula for the slope of the straight line going through these two points is:

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

where the subscripts merely indicate that you have a "first" point (whose coordinates are subscripted with a "1") and a "second" point (whose coordinates are subscripted with a "2"); that is, the subscripts indicate nothing more than the fact that you have two points to work with. Note that the point you pick as the "first" one is irrelevant; if you pick the other point to be "first", then you get the same value for the slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

EXAMPLES

1. Let's say that points $(15,8)$ and $(10,7)$ are on a straight line. What is the slope of this line?
a) Step One: Identify two points on the line.

In this example we are given two points, $(15,8)$ and $(10,7)$, on a straight line.
b) Step Two: Select one to be $(x 1, y 1)$ and the other to be $(x 2, y 2)$.

It doesn't matter which we choose, so let's take $(15,8)$ to be $(x 2, y 2)$. Let's take the point $(10$, 7) to be the point $(x 1, y 1)$.
c) Step Three: Use the equation to calculate slope.

Once we've completed step 2, we are ready to calculate the slope using the equation for a slope:
Slope $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-7}{15-10}=\frac{1}{5}$
2. What is the slope of the line given in the graph?

a) Step One: Identify two points on the line. Let's calculate the slope of the line in the graph above using the points $\mathrm{A}(1,2)$ and $\mathrm{B}(3,6)$.
b) Step Two: Select one to be $(x 1, y 1)$ and the other to be $(x 2, y 2)$. Let's take $\mathrm{A}(1,2)$ to be $(x 1, y 1)$. Let's take the point $\mathrm{B}(3,6)$ to be the point $(x 2, y 2)$.
c) Step Three: Use the equation to calculate slope.

$$
\text { slope }=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{(6-2)}{(3-1)}=\frac{4}{2}=2
$$

SLOPE DIRECTION

The slope of a line can be positive, negative, zero or undefined.

1. POSITIVE SLOPE

Here, y increases as x increases, so the line slopes upwards to the right. The slope will be a positive number. The line on the right has a slope of about $+\mathbf{0} .3$, it goes $u p$ about 0.3 for every step of 1 along the x -axis.

2. NEGATIVE SLOPE

Here, y decreases as x increases, so the line slopes downwards to the right. The slope will be a negative number. The line on the right has a slope of about -0.3 , it goes down about 0.3 for every step of 1 along the x -axis.

3. ZERO SLOPE

Here, y does not change as x increases, so the line in exactly horizontal. The slope of any horizontal line is always zero. The line on the right goes neither up nor down as x increases, so its slope is zero.

4. UNDEFINED SLOPE

When the line is exactly vertical, it does not have a defined slope. The two x coordinates are the same, so the difference is zero. The slope calculation is then something like
slope $=\frac{21}{0}$
When you divide anything by zero the result has no meaning. The line above is exactly vertical, so it has no defined slope. We say "the slope of the line $A B$ is undefined".

A vertical line has an equation of the form $\mathrm{x}=\mathrm{a}$, where a is the x -intercept. For more on this see Slope of a vertical line.

SELF-ASSESSMENT ACTIVITY

1. Calculate the gradient of the line passing through $(-6,-5)$ and $(4,1)$
2. Calculate the gradient of the line through $(5,1)$ and $(5,6)$
3. Calculate the slope of a line passing through $(3,2)$ and $(4,2)$
