7.4.4 THE EQUATION OF A STRAIGHT LINE WITH GIVEN GRADIENT, PASSING THROUGH A GIVEN POINT

Suppose that we want to find the equation of a line which has a gradient of $\frac{1}{3}$ and passes through the point $(1,2)$. Here, whilst we know the gradient, we do not know the value of the y-intercept c .

We start with the general equation of a straight line $y=m x+c$.

We know the gradient is $1 / 3$ and so we can substitute this value for m straightaway. This gives
$\mathrm{y}=\frac{1}{3} \mathrm{x}+\mathrm{c}$.

We now use the fact that the line passes through $(1,2)$. This means that when $\mathrm{x}=1$, y must be 2 . Substituting these values we find
$2=\frac{1}{3} \times 1+c$
So that $c=2-\frac{1}{3}=\frac{5}{3}$
So the equation of the line is $y=\frac{1}{3} x+\frac{5}{3}$
We can work out a general formula for problems of this type by using the same method. We
shall take a general line with gradient m, passing through the fixed point $A\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
We start with the general equation of a straight line $y=m x+c$.

We now use the fact that the line passes through $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$. This means that when $\mathrm{x}=\mathrm{x}_{1}$, y must be y_{1}. Substituting these values we find:
$\mathrm{y}_{1}=\mathrm{mx}_{1}+\mathrm{c}$
so that $\mathrm{y}_{1}-\mathrm{mx}_{1}$

So the equation of the line becomes $y=m x+y_{1}-\mathrm{mx}_{1}$

We can write alternatively $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$

This then represents a straight line with gradient m, passing through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$. So this general form is useful if you know the gradient and one point on the line.

The equation of a straight line with gradient m, passing through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, is

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

For example, suppose we know that a line has gradient -2 and passes through the point ($-3,2$). We can use the formula $y-y_{1}=m\left(x-x_{1}\right)$ and substitute in the values straight away:
$y-2=-2(x-(-3))=-2(x+3)=-2 x-6$
$y=-2 x-4$

SELF-ASSESSMENT ACTIVITY

1. A line through $(2,6)$ has a slope $\frac{2}{3}$. Find its equation and graph it
2. Find the equation of the lines described below (give the equation in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$):
(a) gradient 3 , passing through $(1,4)$;
(b) gradient -2 , passing through $(2,0)$;
(c) gradient $2 / 5$, passing through $(5,-1)$;
(d) gradient 0 , passing $(-1,2)$;
(e) gradient -1 , passing through $(1,-1)$.
