

PHYSICS SENIOR SECONDARY SCHOOL SYLLABUS

GRADES 10 – 12

Prepared by:
Curriculum Development Centre
P.O. Box 50092
LUSAKA
2013

© Curriculum Development Centre 2013

All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright holder.

CONTENTS

		Page
Preface		iv
Acknowled	gements	v
Introduction	1	vi
General Air	ns of the Syllabus	vii
General Str	ucture of the Syllabus	viii
	al Requirements	
	Objectives	X
	the Examination	xi
	ation	xii
Topics of th	e Syllabus	X
Unit 1.0	Measurements	1
Unit 2.0	Mechanics	3
Unit 3.0	Thermal Physics	19
Unit 4.0	Wave motion theory	22
Unit 5.0	Sound	22
Unit 6.0	Light	24
Unit 7.0	Magnetism	27
Unit 8.0	Static electricity	28
Unit 9.0	Current electricity	30
Unit 10.0	Electromagnetic induction	35
Unit 11.0	Basic electronics	38
Unit 12.0	Atomic Physics	42
	Practical Physics	45

PREFACE

The review of this Syllabus was necessitated by the need to improve the quality of education at Senior Secondary School Level as stipulated in the national policy document "Educating Our Future - 1996".

Quality education raises the standard of living for all. This leads to sustainable national development. The syllabus also addresses issues of national concern such as Environmental Education, Gender and Equity, Health Education and HIV/AIDS, Family Life Education, Human Rights, Democracy, Reproductive Health, Population Education, Entrepreneurship and Vocation Skills, ICT skills Family Life and Values Education.

Another reason for revising this syllabus was to provide linkages with the Junior Secondary School level science which serves to be a prerequisite for senior school science.

It is hoped that this syllabus will provide the users with a sound premise on the basis of which meaningful and effective learning experiences will be developed in order to provide a good foundation for further study of this subject area. It is further hoped that through the study of this syllabus we will be able to produce citizens who are scientifically and technologically literate.

Chishimba Nkonsha

PERMANENT SECRETARY - EDUCATION
MINISTRY OF EDUCATION, SCIENCE, VOCATIONAL TRAINING AND EARLY EDUCATION
LUSAKA-ZAMBIA

ACKNOWLEDGEMENTS

The Curriculum Development Centre wishes to pay tribute to the contributors of this Physics Syllabus. The Curriculum Development Centre also wishes to thank the Ministry of Education, Science, Vocational Training and Early Education, for providing the necessary funds, special thanks also go to Japan International Cooperation Agency (JICA) for their technical and financial support particularly in the finalisation of this document and the persons who made the production of this syllabus possible. The institution wishes to express its heartfelt gratitude to individuals and institutions that participated in the production of this syllabus.

Sakala C. N.M (Mrs.)
Director, Standards and Curriculum
MINISTRY OF EDUCATION, SCIENCE, VOCATIONAL TRAINING AND EARLY EDUCATION

INTRODUCTION

This syllabus has taken into consideration relevant aspects of the 1996 National Policy on Education entitled "Educating Our Future", which demands that the education system should aim at producing a learner capable of appreciating the relationship between scientific thought, action and technology on the one hand, and sustenance of the quality of life on the other. Furthermore, it is part of the policy of the Ministry of Education to improve the teaching and learning of Mathematics and Science in High School.

Another major aspect of this syllabus is that it has taken into consideration environmental issues with emphasis on application of Physics in everyday life.

The syllabus takes into account the fact that the pupils who will follow it will be of different background. Some will study further Physics, some will require the knowledge of this background Physics in pursuing other scientific studies, while some will join the world of work.

GENERAL AIMS OF THE SYLLABUS

The Syllabus aims at contributing to pupils' general education by using the impact of well-known applications of physics concepts and principles on society. This approach is intended to stimulate pupils' curiosity and sense of enquiry which will in turn not only provide a suitable basis for further study of the subject, but also provide pupils with sufficient knowledge and understanding to make them become useful and confident citizens. The essence of such an enquiry is related to problem solving. This further aims at developing the skills necessary to find solutions to scientific problems.

During this course pupils should acquire the following:

- 1. Knowledge and understanding of facts, ideas techniques and the applications of Physics.
- 2. Skill in applying their knowledge and understanding in problem solving.
- 3. Practical abilities associated with investigation of certain phenomena and principles in Physics.
- 4. Positive Scientific attitudes such as open mindedness and willingness to recognise alternative points of view.

GENERAL STRUCTURE OF THE SYLLABUS

The syllabus is divided into units. Every effort has been made to arrange the topics in a logical order but this is not intended to suggest a teaching order. It is hoped teachers will develop a considerable flexibility in planning their presentations.

Each of the Units is described under the headings of "Content", "specific outcomes" knowledge, skills and "values". The column headed "skill" is intended to guide with the type of practical skills to be acquired while value must show what action the learner will take after learning the content and skill and is not to be regarded as exhaustive. The teacher can still extend it by relating the factual contents and specific outcome(s) of the syllabus to social, economic and industrial life at both local and national levels.

In view of the increasing impact of electronics and computers, bipolar transistors and logic gates have been included in the syllabus. It is envisaged that an experimental approach will be adopted and that pupils will spend adequate time on individual experimental work.

MATHEMATICAL REQUIREMENTS

The study of Physics through this syllabus strengthens the applications of mathematical skills. It is assumed the pupils will be computer in the following mathematical techniques:-

- 1. Taking account of accuracy in numerical work and handling calculations so that significant figures are neither lost unnecessarily nor carried beyond what is justified.
- 2. Making approximate evaluation of numerical expressions.
- 3. Formulating simple algebraic equations as mathematical models from physics situations and be able to solve them.
- 4. Changing the subject of a formula.
- 5. Expressing small changes or errors as percentages.
- 6. Calculating areas of various shapes.
- 7. Dealing with vectors in all simple forms.
- 8. Plotting results graphically after selecting appropriate variables and scales.
- 9. Interpreting, analysing and translating graphical information.

NOTE: The list of mathematical abilities above is intended as a guide but is in no way limited nor exhaustive

ASSESSMENT OF OBJECTIVES

The syllabus will stress:

- 1. Knowledge and understanding in the following:
 - (a) Scientific phenomena, facts, concepts, theories and laws.
 - (b) Scientific terminology, use of symbols, quantities and units.
 - (c) Scientific apparatus and instruments and their safe operation.
 - (d) Scientific and technological applications with social, economic and environmental relevance.
- 2. Handling information and solving problems including to:
 - (a) locate, select, organise and present information from a variety of sources;
 - (b) translate information from one form to another;
 - (c) manipulate numerical data;
 - (d) identify patterns and draw inferences from information;
 - (e) give reasonable explanations for patterns and relationships;
 - (f) make predictions and hypotheses.
- 3. Experimental skills including those involving how to:
 - (a) follow instructions;
 - (b) use techniques, apparatus and materials;
 - (c) observe, measure and record;
 - (d) plan investigations;
 - (e) interpret and evaluate observations and results;
 - (f) evaluate methods and suggest possible improvements.

STRUCTURE OF THE EXAMINATION

The following will be the structure of the examinations.

There will be three (3) question papers as follows:-

PAPER	TYPE OF PAPER	DURATION	MARKS
1	Multiple choice – 40 compulsory items with 60% testing	1 hour	40
	knowledge and comprehension.		
2	Section A – 8 structured questions		50
	Candidates attempt all the questions		
		2 hours	
	Section B – 4 essay type questions. Candidates attempt		45
	3 of them.		
3	Practical Examination	2¼ hours	30

TIME ALLOCATION

A minimum of six periods of forty minutes each per week, preferably with one (1) double period taken in laboratory for practical work.

SCOPE and SEQUENCE

The following table shows the "Scope and Sequence" of Physics syllabus from G10 to G12.

Grad	de 10	Gr	ade 11	Gra	ide 12
Unit 1 Measurements	SUBTOPIC	Unit 3 Thermal	SUBTOPIC	Unit 8 Static electricity	SUBTOPIC
	10.1.1 International System of Units (SI).	Physics	11.3.1Simple kinetic theory of Matter.		12.8.1 Static Electricity
	10.1.2 Length and time		11.3.2 Measurement of temperature	Unit 9 Current electricity	12.9.1Electric charge, current, and potential difference.
	10.1.3 Mass and, weight		11.3.3 Expansion of solids, liquids and gases.		12.9.2 Electric cells.
	10.1.4 Density		11.3.4 Heat transfer by		12.9.3 Electrical resistance
Unit 2 Mechanics	10.2.1 Scalars and vectors		conduction, convection and radiation.		12.9.4 Heating effect of an electric current
	10.2.2 Linear motion		11.3.5 Measurements of heat		12.9.5 Magnetic effects of electric currents
	10.2.3 Forces	Unit 4 Wave motion	11.4.1 Simple ideas of the wave motion theory.	Unit 10 Electromagnetic induction	12.10.1 The phenomenon of electromagnetic induction

10.2.4 Moment of forces 10.2.5 Work, Energy and Power.		11.4.2 Propagation of waves 11.4.3 Electromagnetic spectrum		12.10.2 The simple A.C. and D.C. generators 12.10.3 Transfor mers
10.2.6 Simple machines	Unit 5 Sound	11.5.1 Properties of sound	Unit 11 Basic electronics	12.11.1 Thermionic emission and electrons.
	Unit 6 Light	11.6.1 Rectilinear propagation of light.		12.11.2 Circuit components.
		11.6.2 Refraction of light		12.11.3 Simple electronic systems
10.2.7 Pressure		11.6.3 Thin converging and diverging lenses.		12.11.4 Impact of electronics on society and industry.
	Unit 7 Magnetism	11.7.1 Simple phenomenon of magnetism	12.12. Atomic physics	12.12.1 Nuclear atom
				12.12.2 Radioactivity

SUBTOPIC-BASED FLOWCHART

The following chart shows the linkage of each sub-topic from G1 to G12. The relevant sub-topics are connected with solid lines.

Subtopic-based Flowchart

TOPICS OF THE SYLLABUS UNIT **TOPIC PAGE** 1.0 MEASUREMENTS 1.1 International System of Units (SI) for fundamental physical quantities 1.2 Length and time..... 1.3 Mass and weight.... 1.4 Volume and Density 2.0 MECHANICS.... 2.1 Speed, velocity and acceleration.... 2.2 Scalar and vector quantities..... 2.3 Forces 2.4 Moments of forces 2.5 Work, energy and power 2.6 Simple machines 2.7 Pressure 3.0 THERMAL PHYSICS 10 3.1 Simple kinetic theory of matter 10 3.2 Measurement of temperature 10 3.3 Expansion of solids, liquids and gases 11 3.4 Heat transfer by conduction, convection and radiation..... 12 3.5 Measurement of heat 13 WAVE MOTION THEORY 4.0 15 Simple ideas of the wave motion theory..... 4.1 15 Propagation, transmission and diffraction of waves..... 4.2 15 4.3 Superposition and interference of waves 16 Electromagnetic spectrum 4.4 16 5.0 SOUND 17 5.1 Properties of Sound 17 6.0 LIGHT..... 19

6.1	Rectilinear propagation of light	19
6.2	Refraction of light	20
6.3	Thin converging and diverging lenses	21
6.4	Dispersion of light	21
7.0	MAGNETISM	22
7.1	Simple phenomenon of magnetism	22
8.0	STATIC ELECTRICITY	23
8.1	Static electricity	23
9.0	CURRENT ELECTRICITY	24
9.1	Charge, current and potential difference	24
9.2	Electrical cells	25
9.3	Electrical resistance	25
9.4	Heating effect of an electric current	26
9.5	Magnetic effects of electric currents	27
9.6	The engine	27
10.0	ELECTROMAGNETIC INDUCTION	28
10.1	The phenomenon of electromagnetic induction	28
10.2	The simple a.c. and d.c. generators	28
10.3	Transformers	29
11.0	BASIC ELECTRONICS	30
11.1	Thermionic emission and electrons	30
11.2	Circuit components	31
11.3	Simple electronic systems	32
11.4	Computers	33
11.5	Impact of electronics on society and industry	33
12.0	ATOMIC PHYSICS	34
12.1	Nuclear atom	34
12.2	Radioactivity	34
	Practical Physics	36

Grade 10

Key competences

- Demonstrate ability to measure length, time, mass, weight and volume
- Show skills and knowledge to calculate density, speed, velocity, acceleration and force
- Demonstrate ability to use different sources of energy
- Demonstrate ability to use simple machines to do work

UNIT 1.0 MEASUREMENTS

General Outcomes:

- Develop an understanding of measurements
- Develop investigative skills

TODIC	CUDTODIC	SDECIEIC OUTCOMES		CONTENT	
TOPIC	TOPIC SUBTOPIC SPECIFIC OUTCOM		KNOWLEDGE	SKILLS	VALUES
10.1 Measurements	10.1.1 International System of Units (SI).	10.1.1.1 Distinguish between basic and derived quantities	The difference between basic and derived quantities: Basic quantities; mass, length, time etc Derived quantities: force, acceleration,	 Comparing basic quantities and derived quantities. Expressing 	 Asking questions about physical quantities Participating in
		10.1.1.2 Identify basic units and derived units.	velocity etc Basic and Derived units: Basic units: metre(m), kilogram(Kg), seconds(S), Kelvin(K) Derived unit: Newton(N),metre per square second(m/s²)	numbers in scientific notation • Specifying number of significant figures	group actively • Applying numbers in standard form

	10.1.1.3 Recognise prefixes, multiples and submultiples of fundamental and derived units. 10.1.1.4 Use scientific notation and significant figures in numerical problems.	 Fundamental and derived units: Prefixes, multiples and submultiples of basic and derived units Scientific notation and significant figures 		
10.1.2 Length and time	10.1.2.1 Demonstrate the use of various measuring instruments to determine length 10.1.2.2 Demonstrate the use of clocks and devices for measuring an interval of time 10.1.2.3 Identify factors that affect the period of a simple pendulum	 Use of measuring instruments: such as rules, vernier calipers and micrometer screw gauge to measure the physical quantity of length Use of devices for measuring time: Using clocks to measure time intervals and period of pendulum A simple pendulum: Factors affecting the period of pendulum such as length and amplitude 	 Measuring lengths of different objects Measuring an interval of time using clocks Communicating factors affecting the period of pendulum 	Participating in group actively Asking questions for more understanding Applying the use of clocks and devices to determine the period of pendulum

10.1.3 Mass and, weight	10.1.3.1 Distinguish between mass and weight	Differences between mass and weight in terms of units, measuring instrument and quantities	 Comparing mass with weight Measuring mass and weight of objects 	 Asking questions for more understanding Appreciating the use of beam
	10.1.3.2 Demonstrate how to measure mass and weight	Instruments for measuring mass and weight: Using Triple beam balances and spring balances to measure mass and weight	 Investigating the centre of mass of objects Communicating conditions for stability of 	and spring balances • Participating in group actively in locating the centre of mass
	10.1.3.3Demonstrate how to locate the centre of mass of an object	How to locate the centre of mass of an object: Use of lamina to locate centre of mass of an object	objects, e.g. base, position of centre of mass	
	10.1.3.4 Describe qualitatively the effect of the position of the centre of mass on the stability of an object.	Stability of objects in terms of the position of the centre of mass e.g. equilibrium (stable ,unstable and neutral)		

10.1.4 Density	10.1.4.1 Determine the density of floating objects 10.1.4.2 Determine the density of a	 Density of floating objects: e.g. cork Density of miscible liquids: e.g. alcohol and water 	Calculating the density of a floating object using displacement method	Participating in a group actively
	mixture of liquids	(b=(m_1+m_2)/(v_1+v_2))	Comparing the densities of	Asking questions for more
	10.1.4.3 Describe what relative density is	What relative density is: Relative density as ratio without units	other objects	understanding
	10.1.4.4 Calculate relative density of air	Calculation of relative density: Use of formula; Relative density of substance (relative density =density of substance/density of water)		

UNIT 2.0 MECHANICS

General Outcomes:

- Demonstrate an understanding of mechanics
- Develop investigative skills

TOPIC	SUBTOPIC	SDECIFIC OUTCOMES			CONTENT	
TOPIC	SUBTOPIC	SPECIFIC OUTCOMES		KNOWLEDGE	SKILLS	VALUES
10.2 Mechanics	10.2.1 Scalars and vectors.	10.2.1.1Describe what scalar and vector quantities are	•	Scalar and Vector quantities: Quantities; Scalar -size and no direction, vectors - size and direction	Classifying physical quantities into vectors and scalars	Participating in a group actively
		 10.2.1.2 Distinguish between scalars and vectors. 10.2.1.3 Demonstrate adding of vectors to determine a resultant 10.2.1.4 Demonstrate how to determine the resultant of two vectors graphically. 	•	The difference between scalar and vectors: Scalar (distance, mass, time, speed, length, area, volume, temperature, density, work, energy, power), Vectors (weight, force, acceleration, displacement, velocity, moment) Resultant of vectors: Adding vectors using the formula $F_R = F_1 + F_2$ and $F_R = F_2 - F_1$ Resultant of two vectors graphically	 Determining magnitudes of resultant vector Formulating the resultant of two vectors by graphical methods 	 Asking questions for more understanding Appreciating the use of graphical method when adding vectors

10.2.2 Linear motion	 10.2.2.1 Describe the terms used in mechanics. 10.2.2.2 Demonstrate the use of equations of uniformly accelerated motion to solve problems 10.2.2.3 Interpret graphical representation of distance-time, Displacement -time, speed-time, velocity-time and acceleration-time. 	 Terms used in machines: such as distance, displacement, speed, velocity, acceleration Use of the following equations of motion (v = u + at, s = (v + u)t/2, s = ut + 1/2 at² v² = u² + 2as) Graphical representation of motion in terms of; rest, constant speed and constant acceleration Consequences of over 	 Comparing distance with displacement; speed with velocity Classifying appropriate equation (s) of motion to solve particular numerical problems Plotting and interpreting graphs Predicting which object in motion would be damaged the most e.g. a slow moving vehicle or a fast moving vehicle, if 	 Participating in a group actively Appreciate the use of equations of motion to solve problems Appreciating graphs Appreciating speed limits, road humps, speed traps etc Appreciating the use of
	velocity-time and		e.g. a slow moving vehicle or a fast moving vehicle, if they hit an obstacle Calculating acceleration of a	Appreciating
	10.2.2.5 Describe the acceleration of free fall for a body near the earth.	Acceleration of free fall for a body near the earth it is constant (approximately 10m/s²)	 body due gravity Communicating the cause and effect relationship of terminal velocity 	

	10.2.2.6 Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance	The falling motion of bodies in a uniform gravitational field: falling terminal velocity		
10.2.3 Forces	 10.2.3.1 Explain what force is. 10.2.3.2 Explain the effect of forces on bodies. 10.2.3.3 Describe the inertia law 10.2.3.4 Demonstrate the relationship between force and acceleration 10.2.3.5 Demonstrate the relationship between mass and acceleration. 	 The definition of force: Force as "Pull" or "push Effects of forces :change in shape, change in size, change direction, change of motion (acceleration or retardation) Resistance to change in state of motion (Newton's 1st law) The relationship between force and acceleration: A constant force produces a constant acceleration The relationship between mass and acceleration: Increase in mass results in reduction in acceleration (mass is inversely proportional to acceleration for a constant force) 	 Communicating the effects of a force using a spring, trolley, Ticker Tape Timer etc Investigating the relationship between mass and acceleration, e.g. higher inertia is due to larger mass Describing the relationship between mass and acceleration Organising the data of investigation in a table 	 Participating in a group actively Appreciating the use of safety belts on vehicles Appreciating Newton's second law of motion Giving a presentation of group work Knowing the safety rules of investigation

		 10.2.3.6 Perform calculations on force. 10.2.3.7 Investigate the effect of force on a spring. 10.2.3.8 Demonstrate the effects of friction on the motion of a body. 10.2.3.9 Describe the motion in a circular path due to a perpendicular force. 	 How to calculate force: Using formula; Force = mass ×acceleration Hooke's law (F α e) including graphs. Effects of friction e.g. heat, wear and tear Centripetal force: (F=m(v²/r)) and centrifugal force 	 Calculating force, mass and acceleration Communicating the effects of friction 	 Applying the restoration force in devises Participating in class discussion
10.2	2.4 Moment of forces.	10.2.4.1 Perform calculations based on the principle of moments. 10.2.4.2 Investigate the everyday application of moments.	 Mass, weight and distance of a uniform object e.g. metre rule, metal bar, plank etc based on the principle Application of moments e.g. opening a door or window, opening a bottle with an opener, a see-saw, turning a tap on, tightening a nut with a spanner etc 	 Experimenting the principle of moments Calculating mass, weight and perpendicular distances 	 Participating in a group actively Justifying why handles of certain objects are long. e.g a spanner, wheelbarrow etc

10.2.5 Work, Energy and Power.	10.2.5.1 Explain the meaning of the terms work, energy and power.	The definition of Work, Energy and Power: Work (force x distance in direction of force) Energy(ability to do work) Power(rate of doing work)	 Communicating work, energy and power Communicating the SI units for work, energy and power Calculating work, 	 Justifying importance of conserving sources of energy Cooperating in group activities Appreciating
	 10.2.5.2 Identify the units of measurement for work, energy and power 10.2.5.3 Calculate work using the appropriate formula 10.2.5.4 Identify the different forms of energy 	 The units of work, energy and power: Work(joule), Energy(joule) and Power (watt) The formulae of work: Work = (Force) x (distance moved in the line of action of the force) Different Forms of energy: e.g. mechanical (Kinetic 	energy and power using appropriate formulae • Analysing different forms of energy and there sources • Comparing different forms of energy • Communicating renewable and non-renewable resources	the use of clean energy (pollution free energy) Cooperating in group activities Being aware that some energy sources are non renewable Participating actively in groups
		and gravitational potential energy), Chemical, electrical energy etc	 Observing the effects of energy sources on the environment Demonstrating energy transformations 	Asking questions for more understanding

10.2.5.5 Explain qualitatively and quantitatively the terms gravitational potential and kinetic energy. 10.2.5.6 Describe sources of renewable and non renewable energy.	 Potential and Kinetic Energy: Gravitational potential energy(energy due to position), Kinetic energy(energy due to motion) NB: Gravitational potential energy (E_P = mgh) and kinetic energy (E_K = 1/2mv²) Renewable and non-renewable energy: Renewable sources of energy: (solar, wind, hydroelectric, geothermal, bio-gas) Non-renewable energy (chemical/fuel, nuclear energy) 	Describing the law of conservation of energy Calculating numerical energy problems involving Einstein formula Calculating efficiency Calculating power from the formula	 Applying the law of conservation of energy Appreciating Albert Einstein formula Applying the formula in determining energy.
 10.2.5.7 Explain the effects of the use of energy sources on the environment. 10.2.5.8 Demonstrate energy transformation from one form to another 	 Effects of use of energy sources on the environment: e.g. air pollution, water pollution, deforestation, land degradation etc Transformation of energy: e.g. chemical energy(Battery) to electric energy (wire)to light energy(bulb) 		

	10.2.5.9 Describe the conservation of energy 10.2.5.10 Calculate energy using mass and velocity 10.2.5.11Demonstrate the	 Principle of conservation of energy Calculation of energy: Using the formula (E = mc²) using the formula to solve numerical problems of energy. Calculation of 		
	calculation of efficiency of energy conversion using the appropriate formula	efficiency of energy: Using the formula (Efficiency = energy output/ energy input x 100%)		
	10.2.5.12Demonstrate calculation of power using the appropriate formula	 Calculation of power: Using the formula (Power = work done/ time) 		
10.2.6 Simple machines	10.2.6.1 Describe what a simple machine is	The definition of a simple machine: Enables a large load to be overcome by a small effort	 Communicating types of simple machines Relating the 	 Cooperating in group activities Listening to other learners with respect
	10.2.6.2 Identify the different types of simple machines.	Types of simple machines: e.g. Levers, pulleys, gears, inclined planes, wheel and axle	distance moved by the effort to the distance moved by the load at the same	Appreciating the use of

	10.2.6.3 Describe the distances moved by the effort and the load in a simple machine 10.2.6.4 Explain the terms of Mechanical advantage (MA), Velocity Ratio (VR) and Efficiency.	 The relationship between the distance and effort & load in a simple machine: Distance moved by effort and distance moved by the load in the same time The definition of Mechanical advantage (MA), Velocity Ratio (VR) and Efficiency: Mechanical advantage (MA = Load/Effort) Velocity Ratio (VR = distance moved by effort / distance moved by effort / distance moved by load) Efficiency (; Efficiency = (MA/VR) x 100%) Calculation of MA,VR and efficiency of simple machines 	time for a particular type of a simple machine • Calculating MA, VR and efficiency of a simple machine	simple machines in doing work e.g bottle opener Applying the use the formula to compare MA of different simple machines
10.2.7 Pressure	10.2.7.1 Explain what pressure is. 10.2.7.2 Describe how	 The definition of pressure: Pressure(force/area) Units(pascals, N/m², millibars) The relationship 	 Measuring pressure using barometer, and manometers Calculating pressure in fluids 	 Cooperating in group activities Applying the idea of pressure in our
	pressure relate to force and area	between force and area in pressure and its		daily life

using appropriate examples and formula	formulae: Relating force and area as on when force increases pressure increase and when area increase pressure reduce (calculations using the formula P = F/A)	 Communicating factors affecting pressure in liquids Describing the transmission of pressure 	Appreciating the use of simple machines in doing work e.g
10.2.7.3 Identify factors affecting pressure in liquids.	Factors affecting pressure in liquids: Depth/height and density of the liquid	 Calculating pressure using the formula p= pgh Communicating the principle of 	 Appreciating the use the formula to calculate
10.2.7.4 Describe the transmission of pressure in hydraulic systems.	Applications of pressure (Pascal's Law): e.g. hydraulic brakes, hydraulic press and jack	Archimedes principle	pressureAppreciating the use of a barometer and manometer
10.2.7.5 Calculate pressure in liquids.	Calculation of pressure in liquids: Using appropriate formula; "p = pgh" to calculate pressure in liquids		Cooperating in group activities
10.2.7.6 Explain the mechanism of a mercury barometer.	The mechanism of a mercury barometer: Use in determining atmospheric pressure		Participating actively in groups
10.2.7.7 Explain the mechanism of a manometer	The mechanism of a manometer: Use in determining gas pressure		

10.2.7.8 Explain principles of upthrust and floatation.	Principals of upthrust and floatation in fluids (Archimedes principle)	
10. 2.7.9 Describe how upthrust relate to floatation in fluids.	Relationship of upthrust and floatation	

Grade 11

Key competences

- Demonstrate ability to show how pressure varies with volume and temperature
- Show skills and knowledge on the construction of thermometers
- Demonstrate ability to show heat transfer in solids ,liquids ,and gases
- Demonstrate ability to show that sound requires a medium for transmission

UNIT 3.0 THERMAL PHYSICS

General Outcomes:

- Demonstrate an understanding of thermal physics
- Develop investigative skills

TOPIC	SUBTOPIC	SDECIEIC OUTCOMES	CONTENT		
TOPIC	SUBTOPIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES
11.3Thermal physics	11.3.1Simple kinetic theory of Matter.	11.3.1.1 Explain What the kinetic theory is	The definition of kinetic theory: Matter is made up of discrete individual particles that are continuous in random motion	Predicting the cause of continuous random motion of the discrete individual particles	 Cooperating in group activities Being aware of the cohesive and adhesive forces in matter
		11.3.1.2 Describe qualitatively the molecular model of matter.	Structure of matter(solid ,liquid ,gas es) and intermolecular forces: e.g. cohesive and adhesive	Interpreting the intermolecular forces i.e. cohesive and adhesive in a much simpler way	Asking questions for more understanding Asking more
	11.3.1.3. Explain changes of state in terms of the kinetic theory of matter.	Change of state of matter in relation to kinetic theory	Experimenting the Brownian motion, diffusion,	questions for more understanding	

	11.3.1.4 Apply kinetic theory to explain rates of diffusion, Brownian motion, evaporation and cooling effect of evaporation. 11.3.1.5 Apply the kinetic theory to explain gas pressure.	 Use of kinetic theory as in Rate of diffusion, Brownian motion, evaporation and cooling effect of evaporation in terms of kinetic theory Kinetic theory in gas pressure(compressin g a gas in a cylinder) 	evaporation and cooling. Collecting the data as experiment Formulating conclusion of experiment	
11.3.2Measure ment of temperature	11.3.2.1 Explain what temperature is 11.3.2.2 Describe physical properties of substances which change with temperature. 11.3.2.3 Measure the temperature with thermometers 11.3.2.4 Describe suitability of alcohol and mercury for use in liquid-in-glass thermometers.	 The definition of Temperature: as average kinetic energy of the particles of a substance Physical properties of substances: such as density, electrical resistance etc of substances Measurement of temperature and Calibration of thermometers Suitability in terms of colour, expansion, conductivity. 	 Communicating information on temperature Experimenting the thermal expansion of matter(liquid, solid, gases) Measuring the temperature Comparing Celsius and Kelvin scale 	 Asking questions for more understanding Cooperating in groups activities Appreciating the use of thermometers in determining temperature Appreciating the use of thermocouple s

	 11.3.2.5 Describe the relationship between the Celsius and Kelvin scales. 11.3.2.6 Describe the structure and use of a thermocouple thermometer. 11.3.2.7 Demonstrate the measurement of temperature using an appropriate 	 Relation of Celsius and Kelvin scale (K =t + 273) Structure of thermal couple: consisting different metals, two junctions, sensitive galvanometer Appropriate use of thermometers: Liquid in glass thermometers and thermocouple 		
11.3.3Expansi on of solids, liquids and gases.	thermometer. 11.3.3.1Describe qualitatively the thermal expansion of solids, liquids and gases. 11.3.3.2 Explain the effects of expansion of water on aquatic life. 11.3.3.3Demonstrate that solids, liquids and gases expand at different rates. 11.3.3.4Demonstrate how to determine the boiling and melting point of different substances.	The thermal expansion of matters: in terms of linear, area and volume expansion Effects of Anomalous expansion of water Different rates of expansions of matter Boiling and melting point of substances: Graphical representation and interpretation	 Experimenting the thermal expansion of solids, liquids and gases Communicating the effects of expansion on of water on aquatic life during extreme cold seasons. Experimenting the boiling and melting points of matters Collecting the data on temperature and time Organising the data in graphs. 	 Appreciating the knowledge about expansion of solids, liquids and gases. Cooperating in group activities Asking questions for more understanding

11.3.3.5Explain effects of pressure on the melting and boiling points. 11.3.5.6Investigate effects	Effects of pressure on melting and boiling point of substances: e.g. increase in pressure lowers the melting point) Boiling point(increased pressure increases the boiling point) Effects of impurities on	 Analyzing the data on graph Inferring the boiling and melting point of matter Communicating effects of pressure on melting and boiling points 	 Being aware of the effects of pressure on boiling and melting points Participating in groups discussion Asking more
of impurities on the melting and boiling points of substances. 11.3.3.7 Demonstrate the effect of varying pressure on volume of a gas	the melting and boiling points of substances: such as Impurities lower the melting point while increase the boiling point of a substance Boils law: use of equation PV=a constant at constant pressure	 Investigating the effect of impurities on melting and boiling points Organizing data in the tables to verify the gas laws 	questions for more understanding • Applying the use of graphs to relate variables
11.3.3.8 Describe the relationship between temperature and volume of a gas	 Charles law: as temperature against volume of a gas V₁/T₁ = V₂/T₂ 		
11.3.3.9 Explain the Kelvin scale from the relationship between temperature and	Kelvin Scale; volume- temperature change (constant pressure) Graphical extrapolation		

	volume. 11.3.3.10Demonstrate the use of the ideal gas equation to solve simple numerical problems.	• The ideal gas equation (P ₁ V ₁ /T ₁ =P ₂ V ₂ /T ₂) and numerical problems.		
11.3.4 The Engine	 11.3.4.1 Explain what an internal combustion engine is. 11.3.4.2 Identify the different parts of an internal combustion engine. 11.3.4.3 Describe the operation of the spark plug. 11.3.4.4 Describe the different strokes in a four stroke internal combustion engine 11.3.4.5 Describe efficiency of a diesel and petrol engine 	 The internal Combustion Engine; The ignition of the mixture of liquid fuel and air, inside the cylinder (Petrol and diesel engine) Parts of internal combation engine: such as valves, piston, spark plug, cylinder The operation of Spark plug (produces a spark). The strokes in a four stroke internal combustion engine: Intake, compression, power and exhaust. Efficiency of Diesel engines and petrol engines 	 Communicating the operation of an internal combustion engine. Communicating different parts and different strokes of an internal combustion Engine. Comparing the most efficient and yet economical engine to use 	 Appreciating the use of machines Asking questions for more understanding Participating actively in group activities

11.3.5 Heat transfer by conduction, convection and radiation.	 11.3.5.1 Explain methods of heat transfer. 11.3.5.2 Use kinetic theory to explain heat transfer. 11.3.5.3 Demonstrate heat conduction in different substances. 11.3.5.4 Demonstrate the uses of bad and good conductors of heat. 11.3.5.5Demonstrate convection in liquids and gases. 	 Heat transfer methods: Conduction, convection and radiation Relationship between kinetic theory and heat transfer Heat conduction in different substances Uses of conductors Good conductors; pans, kettle, pots etc; Bad conductors; plastic handles, wooden handles etc Heat transfer through Convection in fluids 	 Verifying the methods of heat transfer by experimentation Identifying the relationship between kinetic theory to heat transfer Communicating uses of bad and good conductors in everyday life Experimenting good and bad absorbers of radiant heat 	 Participating in group activities during experiments. Being aware of the fact that heat transfer can be explained in terms of kinetic theory. Cooperating in group activities Listening to others with respect
	differences between bad and good absorbers of radiant energy 11.3.5.7 Demonstrate the differences between good and bad heat emitters.	absorbers of heat: e.g. shiny(white or silver) and dull(black) surfaces • Differences between good and bad emitters of heat such as shinning (white or silver) and dull (black surfaces)	 Inferring good and bad emitters of heat. Investigating the daily applications of the methods of heat transfer 	about heat transfer and its application

	11.3.5.8 Explain everyday's applications of knowledge on conduction, convection and radiation.	Application of knowledge on the processes of heat transfer: e.g. thermos flask, electric kettle ,land and sea breeze, green house effect		
11.3.6 Measurement of heat.	11.3.6.1Demonstrate the difference between temperature and heat energy. 11.3.6.2Describe the terms of heat capacity and specific heat capacity. 11.3.6.3Identify the SI units of specific heat capacity. 11.3.6.4Demonstrate how to measure specific heat capacity of solids and liquids.	 Difference between temperature and Heat energy Terms of heat capacity and specific heat capacity: such as Heat capacity(heat to raise temperature by 1K) Specific heat capacity (quantity of heat which raises the temperature of unit mass by 1K.) SI Units of specific heat capacity: Joules per kilogram Kelvin(J/kg K) Measurement of Specific heat capacity of solids and liquids through Electrical method and methods of mixture 	 Comparing between temperature and heat transfer Communicating heat capacity and specific heat capacity Communicating the SI units for specific heat capacity Measuring specific heat capacity of solids and liquids 	 Participating in group activities Being aware of the difference between heat capacity and specific heat capacity Cooperating in group activities Appreciating the knowledge about heat capacity

11.3.6.5Describe the terms latent heat, specific latent heat of fusion	Scientific Terms: Latent heat; specific latent heat of fusion (melting)	Communicating specific latent heat	Being aware of latent heat
and of vaporisation.	and specific latent heat of vaporization	 Calculating numerical problems on heat 	Appreciating the formula used to calculate latent
11.3.6.6Demonstrate the solving of numerical problems on heat	Numerical problem on latent heat	measurement	heat
measurements			

UNIT 4.0 Wave motion

- Demonstrate an understanding of wave motion
- Develop investigative skills

TOPIC	SUBTOPIC		CONTENT			
		SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES	
11.4 Wave motion	11.4.1 Simple ideas of the wave motion theory.	11.4.1.1 Demonstrate wave motion. 11.4.1.2 Distinguish between longitudinal and transverse waves. 11.4.1.3Describe the terms associated with waves 11.4.1.4 Apply the wave equation in solving wave motion problems	 Wave motion: e.g. vibrations in ropes, Springs Different types of wave: Transverse (water and light waves) and Longitudinal (sound waves)in terms of direction of oscillation Scientific terms: Amplitude (A), period(T), frequency (f), wavelength (λ) and wave front The wave equation: Displacement-time and displacement – distance graphs of a wave. (Use the 	 Designing experiments to demonstrate wave motion by using ropes, strings Communicating terms associated with waves Calculating numerical problems using the using the formula: "V = fλ" communicating knowledge on the daily application of waves 	Asking questions for more understanding Cooperating in group activities Being aware of the terms associated with wave motion Appreciate the use of the formula to calculate speed the of a wave Participating in	
		11.4.1.5 Explain the use of waves in everyday life.	 equation v = fλ.) Use of waves in our life: radio, television, 		group activities	

11.4.2 Propagation of waves	11.4.2.1 Explain what propagation, reflection, refraction and diffraction of waves are	Scientific terms: Propagation, reflection and refraction of waves. Diffraction of waves using wide, narrow gaps, sharp edges.	Experimenting the reflection, refraction and propagation of waves using appropriate apparatus.	 Asking questions for more understanding Cooperating in group activities
	11.4.2.2 Demostrate constructive and destructive interference of waves.	Two types of Interference of waves: such as Constructive and destructive	Analysing the wave patterns produced by using barriers having different slit sizes	Participating in class discussion actively
11.4.3 Electromagnet ic spectrum	11.4.3.1 Describe main components of electromagnetic spectrum.	Main components of electromagnetic spectrum: such as Gamma, X-rays, ultra violet, visible light, infrared, microwaves and radio waves	Communicating all components of electromagnetic spectrum Communicating properties of electromagnetic	Being aware of the components of electromagnetic waves and their properties.
	11.4.3.2 Describe the properties of electromagnetic waves	Properties of electromagnetic waves: e.g. transverse in nature, same speed in vacuum(approximatel y, c = 3.0 x 108 m/s) etc	 Analyzing the sources of each of the electromagnetic rays 	Appreciating the knowledge about the existence of electromagnetic radiation.
			Communicating knowledge on how to detect the rays and their uses	Cooperating in group activities

11.4.3.3 Identify the sources of each of the rays in the electromagnetic spectrum. 11.4.3.4 Describe the method of detection each of the main component of the electromagnetic spectrum. 11.4.3.5 Explain the use of each of the waves in the electromagnetic radiation spectrum.	Sources of rays in electromagnetic spectrum: e.g. sun radioactive materials, oscillating electrical circuit etc The method for detecting electromagnetic radiation Uses of electromagnetic waves	Communicating the uses of electromagnetic waves Investigating the harmful effects radiation	Participating in groups actively
11.4.3.6 Explain the harmful effects of ultra violet radiation, gamma rays and x-rays to life.	Harmful effects of electromagnetic waves e.g. skin cancer etc		

UNIT 5.0 SOUND

- Demonstrate an understanding of sound
- Develop investigative skills

TOPIC	SUBTOPIC	PIC SPECIFIC OUTCOMES	CONTENT			
TOPIC	SUBTOPIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES	
11.5 Sound	11.5.1 Properties of sound	11.5.1.1 Explain how sound is produced.	 Production of sound using vibrating objects 	Experimenting on sound production	Cooperating in group activities	
		11.5.1.2 Describe what rarefactions and compressions are.	Sound wave essentials: rarefactions	Communicating knowledge about wave motion	Participating in groups actively	
			(stretches) and compressions ("Squash es")	Designing experiment that	 Asking questions for more 	
		11.5.1.3 Describe the approximate range of audible frequencies.	 Range of audible sound frequencies (20Hz to 20000Hz) 	sound requires a medium for its propagation through experimentation • Communicating knowledge about the speeds of sound in different medium. • Identifying factors that	understanding • Being aware of	
		11.5.1.4 Investigate that sounds requires a medium for transmission.	Effects of sound waves traveling through air and a vacuum		the fact that sound travels at different speeds in different media • Giving	
		11.5.1.5 Determine the speed of sound in air.	Speed of sound in air (approximately 330m/s)		presentation • Listening to others with	
		11.5.1.6 Describe the relative speed of sound in solid, liquid and gas.	Respective speeds of sound in solids, liquids and gases	influence the quality of sound	respect	

UNIT6.0 Light

- Demonstrate an understanding of Light
- Develop investigative skills

TOPIC	CUDTODIC	SPECIFIC OUTCOMES	CONTENT		
TOPIC	SUBTOPIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES
11.6Light	11.6.1 Rectilinear propagation of light	11.6.1.1Describe the rectilinear propagation of light. 11.6.1.2Investigate the formation of shadows and eclipse. 11.6.1.3Describe reflection of light. 11.6.1.4 Investigate the laws of reflection of light	NOWLEDGE The nature of light: Straight line propagation of light Formation of shadows(umbra, penumbra) and eclipses(earth in umbra and penumbra) Reflection of light on smooth and rough surfaces: as being regular and diffuse Laws of reflection: as angle of incidence = angle of reflection and incident ray, reflected ray and the normal all lie in	• Experimenting the nature of light (light travels in a straight line) • Predicting the formation of shadows and eclipse • Experimenting the laws of reflection • Investigating the characteristics of an image formed by plane mirrors using ray diagrams	Appreciating the existence of light Cooperating in group activities Asking questions for more understanding Giving presentation Listening to others with respect

	11.6.1.5 Demonstrate the formation of images by plane mirrors.11.6.1.6 Identify the position of an image using plane mirrors.	 Image in a plane mirror (virtual, laterally inverted ,position, position and size) The position of an image: Construction of ray diagrams 		
11.6.2 Refraction of light	11.6.2.1 Describe what refraction of light is 11.6.2.2 Explain the terms of	 Refraction of light: as Bending of light rays after passing through different media. Incident ray, 	 Experimenting the refraction of light Collecting data on the laws of 	 Asking questions for more understanding Cooperating in
	refraction of light	refracted ray ,normal ray and emergent ray) • Laws of refraction:	 refraction Calculating the refractive index 	group activities • Participating in group activities
	11.6.2.3 Verify the laws of refraction of light.	as The ratio sin i/sin r is a constant value(snells law) The incident ray ,the normal, and the refracted ray all lie in the	 Comparing the refractive index to critical angle Communicating the total 	 Applying the knowledge of refraction in daily life
	11.6.2.4 Describe what refractive index is.	same plane Refractive index: as Measure of bending of light Refractive index of	internal reflection	Appreciating the knowledge on total internal reflection

11.6.2.5 Investigate the refractive index of a glass block.11.6.2.6 Calculate refractive index of a substance (<i>n</i>) using real and apparent depth.	glass • Using of formula, refractive index of "substance = real depth/apparent depth"	
11.6.2.7 Explain the term 'critical angle'.	 Critical angle: as angle of incidence at which the angle of refraction is 90° 	
11.6.2.8 Describe the relationship between critical angle and refractive index.	 the relationship between critical angle and refractive index: n = sin 90°/ sin c, Angle of incidence greater than critical angle 	
11.6.2.9 Explain how total internal reflection occurs.	 Internal reflection: all the light reflected inside the more denser medium Use of internal 	
11.6.2.10 Explain how total internal reflection is used.	reflection: optic fibre for communication	

11.6. 3 Lenses.	11.6.3.1 Describe different types of lenses.	Types of lenses; Convex (thin converging) and concave (diverging)	Communicating different types of lenses	Asking questions for more understanding
	11.6.3.2 Explain the action of lenses on beams of light.	Types of rays: Converge and diverge rays of light	Experimenting to find out what happens to light when passed through lenses.	Cooperating in group activitiesParticipating in group activities
	11.6.3.3 Demonstrate how to determine the focal length,	 Focal length: NB: use of formula: "1/f = 1/u + 1/v, magnification=v/u" 	Inferring the focal lengthPredicting the	activelyGiving presentation of group activity
	11.6.3.4 Calculate the power of the converging lens	• Power of the lens: (P=1/f)	images formed by converging lenses	Listening to others with respect
	11.6.3.5 Demonstrate how to obtain images formed by converging lenses	Characteristics of image: in terms of the position, size and nature of images formed by	Investigating the uses of lenses	Accept responsibility of group work
	11.6.3.6 Describe the uses of lenses in everyday life.	converging lenses. • Use of lens: in correcting defects in vision: short sight-concave lens, long sight-convex lens, LCD, Camera etc.		

UNIT 7.0 Magnetism

- Demonstrate an understanding of magnetism
- Develop investigative skills

TODIC	CLIDTODIC	CDECIEIC OUTCOMES		CONTENT	
TOPIC	SUBTOPIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES
11.7 Magnetism	11.7.1 Simple phenomenon of magnetism.	11.7.1.1 Describe properties of magnets	 Fundamental properties of magnet: such as repulsion, attraction direction N- S,pole, etc 	 Communicating knowledge on magnetism theory Investigating induced magnetism 	Cooperating in group activitiesAsking
		11.7.1.2 Explain the domain theory of magnetism 11.7.1.3 Demonstrate induced	Domain theory of magnetism	Experimenting on magnetization and	questions for more understanding
		magnetism.	 Induced magnetism: Transfer of magnetic properties without contact 	 demagnetization Observing magnetic field lines using a compass and/ or 	Participating in group activities
		11.7.1.4 Demonstrate the making of a magnet	Magnetisation: using stroking and electrical method	iron filings • Formulating the pattern of magnetic	actively • Applying the
		11.7.1.5 Demonstrate the way to destroy a magnet	Demagnetisation: using methods such as Electrical method, hammering, heating	field lines • Communicating information on the	use of magnets in everyday life
		11.7.1.6 Demonstrate the	etcMagnetic field lines:	uses of magnets	 Appreciating the uses of

plotting of magnetic field lines.	Use of Magnetic compass to plot field lines.	magnets
11.7.1.7 Distinguish the magnetic properties of iron and steel. 11.7.1.8 Explain the use of magnetic screening and magnetic keepers.	 Magnetic properties of Iron (susceptible) and steel (retentive). The use of magnetic screening and magnetic keepers: Magnetic screening (shielding equipment) and magnetic 	
11.7.1.9Describe the uses of magnets.	 keepers.(prevent loss of magnetic strength) Use of magnets in our life: circuit breakers, speakers ,electromagn ets 	

Grade 12

Key competences

- Demonstrate ability to measure current and voltage
- Show skills and knowledge to dispose cells and battery
- Demonstrate ability to save electricity
- Demonstrate ability to cost use of electricity

UNIT 8.0 STATIC ELECTRICITY

- Demonstrate an understanding about Static electricity
- Develop investigative skills

TOPIC SUBTOPIC	SDECIEIC OUTCOMES	CONTENT			
TOPIC	SUBTUPIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES

12.8 Static electricit y 12.8.1 Static Electricity.	12.8.1.1 Demonstrate the existence of static charges 12.8.1.2 Explain how to detect electric charges.	 Existence of static charge: Positive and negative charges (Law of electrostatics) Detection of charge: charging by contact, testing the sign of charge using gold - leaf electroscope etc 	 Experimenting the existence of charges by rubbing some materials Detecting charge using an electroscope Communicating 	 Cooperating in group activities Asking questions for more understanding Participating in groups actively 	
		12.8.1.3 Describe the properties and uses of static charges	 Properties and uses of static charges: -Properties; like charges repel, unlike charges attract -Uses: dust precipitators, ink jet printers, photocopiers. 	properties and uses of static charge • Experimenting charging and discharging of objects	 Knowing the safe rules of experiment Being aware of the effects of charges
		 12.8.1.4 Describe the electric charging and discharging of objects. 12.8.1.5 Explain the relationship between current and static electricity. 	 Electric charging and discharging of objects. Relationship between current and static electricity in terms of effects as static electricity producers same effect as current electricity. 	 Communicating knowledge on the relationship between current and static electricity Investigating the effects of static charges on the environment e.g. lightning 	
		12.8.1.6 Investigate effects of static charges on the environment.	Effects of static charges on an environment: e.g. lightning etc		

UNIT 9.0 CURRENT ELECTRICITY

- Demonstrate an understanding of Current Electricity
- Develop investigative skills

TOPIC	SUBTOPIC	SPECIFIC OUTCOMES	CONTENT		
TOFIC	SUBTOFIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES
12.9 Current electricity	12.9.1 Electric charge, current, and potential difference.	12.9.1.1 Describe the terms associated with electricity 12.9.1.2 Identify the units of electric charge and current.	 Scientific Terms: such as Electric charge, potential difference and electric current Units of electric charge and current: as Coulomb and ampere (I =Q/t) 	 Measuring an electric current using an ammeter. Communicating the SI units for voltage Communicating 	 Participating in groups actively Cooperating in group works Appreciating the use of electrical appliance

12.9.1.3 Demonstrate how to measure an electric current. 12.9.1.4 Describe what potential difference is. 12.9.1.5 Describe what the volt is.	 Measure an electric current in the circuit: Ammeter Potential difference: as energy required to move a unit charge between two points in a circuit Volt: as joules per coulomb 	the concept of the energy dissipated • Measuring potential difference using a voltmeter	Knowing the safe rules of experiment
12.9.1.6 Differentiate between potential difference (PD) and electromotive force (EMF).	Difference between PD and EMF in terms of work done per unit of charge in driving charge in a circuit and through a component		
basic concept of EMF.	The basic concept of EMF		
12.9.1.8 Demonstrate the measuring of potential difference (PD)	 Measurement of PD and EMF: Connecting terminals across source of electric 		

	and electromotive force (EMF).	current /conductor		
12.9.2 Electric cells.	12.9.2.1 Describe the structure of primary and secondary cells.	Structure of primary and secondary cells: Primary cells(dry cell), Secondary (lead acid accumulator)	 Communicating the structure of cells Investigating charging and discharging an acid accumulator 	 Asking questions for more understanding Cooperating in group activities
	12.9.2.2 Demonstrate charging and discharging of the accumulator.	 How to charge and discharge the accumulator: Charging when current is passed a in opposite direction to current supplies, discharging when in use (acid accumulator) 	Communicating appropriate methods of disposing off used cells	 Participating in group activities actively Applying the knowledge of disposal of cells in dairy life
	12.9.2.3 Identify methods of disposal of used cells	 Appropriate methods of disposing used cells. 		
12.9.3 Electrical resistance.	12.9.3.1 Explain the meaning of the resistance	 Resistance: opposition to the flow of charge 	 Measuring the current and potential difference, using 	 Asking questions for more understanding

	12.9.3.2 Demonstrate how to determine resistance in a simple circuit. 12.9.3.3 Describe the relationship between current and potential difference in Ohmic and non Ohmic conductors.	 Value of resistance in series and parallel (use formula 1/R = 1/R₁ + 1/R₂) Relationship between current and potential difference: (Graph of p.d. against current for Ohmic and non-Ohmic conductors) 	a voltmeter and an ammeter Collecting data as experiment Organizing data in tables and their graphs on ohmic and non ohmic conductor Formulating the patterns in data	 Cooperating in group activities Participating in group activities actively Knowing the safe rules of experiment
	12.9.3.4 Describe what the internal resistance of a cell is.	Internal resistance of a cell		
	12.9.3.5 Calculate the resistance in series and parallel circuits with Ohm's law.	 Ohm's law in series and parallel circuits. (R = V/I) 		
12.9.4 Heating effect of an	12.9.4.1 Demonstrate energy transformations	Conversion of energy from electricity to heat.	Analysing energy changes from one form to the	Asking questions for more

electric	in an electric		other	understanding
current.	circuit. 12.9.4.2 Investigate the heating effect of	Heating effect of an electric current in	 Investigating the heating effect of an electric 	Cooperating in group activities
	an electric current. 12.9.4.3 Demonstrate	heating appliances. • Calculations of	currentCalculating	Participating in group activities
	how to calculate electrical	electrical energy: Use of formula (E=	electrical energy using E=VIt	actively
	energy. 12.9.4.4 Describe the	VIt, etc)	Communicating	Appreciating the use of
	relationship of voltage, current and power.	 The relationship of voltage, current and power: Power = voltage x current(P=VI) 	relationship among power, voltage and current	electricity at home • Cooperating in group activities
	12.9.4.5 Demonstrate how to calculate the cost of using electrical Energy	Cost of using electrical energy: use of kWh as a unit of electrical energy	 Calculating the cost of using electrical energy Communicating 	 Applying the safety precautions in the use of electricity
	12.9.4.6 Describe the use of switches, fuses, earthing and the three pin-plugs.	• Electrical components: e.g. switches (on /off power), fuses (prevent appliances from damage), and the three pin-plugs (connecting	the use of some named electrical components Investigating the safety precautions Communicating the colouring of insulators	Appreciating the use of energy saving bulbs
	12.9.4.7 Explain the need	appliance). • Safety	Investigating the	

for earthing metal cases and for double Insulation. 12.9.4.8 Describe the meaning of three wires found in the cable	precautions (prevent electric shocks, accidents) Three types of Wires: Live (red or brown), earthing (green and yellow) and neutral (blue)	basic wiring system in a house • Communicating ways of conserving energy	
12.9.4.9 Describe the domestic electrical wiring system	Household circuits: such as cooker circuit, ring circuit, lighting circuit		
12.9.4.10 Describe ways of conserving electrical energy in homes and industry.	 Ways of conserving electrical energy: using energy saving bulbs, switch and serve etc. 		

12.9.5 Magnetic effects of electric currents.	12.9.5.1 Explain magnetic field patterns of electric currents.	Lines of force (Magnetic flux): patterns of electric currents	 Experimenting the magnetic field patterns of electric currents Communicating 	Asking questions for more understanding
	12.9.5.2 Describe the applications of the magnetic	Applications of electromagnets: electric bells, relay	use of electromagnets	Cooperating in group activities
	effect of an electric current. 12.9.5.3 Explain the	switches etc	Investigating the displacement of a current	Participating in group activities actively
	behaviour of an electric current in a magnetic field.	 The behaviour of an electric current in a magnetic field: Displacement of 	carrying wire in a field Inferring the	 Asking questions for more understanding
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	current carrying wire current or electron beam	attraction and repulsion of forces between	Applying the effects of magnetic field
	12.9.5.4 Describe the application of a current placed in a magnetic field.	 Applications of current in a magnetic field: e.g. D.C. motors, galvanometers, ammeter etc 	 Investigating the effects of magnetic fields 	
	12.9.5.5 Describe the nature of forces between parallel currents.	 Nature of forces: attraction and repulsion of forces between parallel currents. 		

12.9.5.6 Describe the effect of magnetic fields on human health and environment.	Effects of magnetic fields: hearing impairment, radar interference in communication,etc	

UNIT 10.0 ELECTROMAGNETIC INDUCTION

- Demonstrate an understanding about electromagnetic induction
- Develop investigative skills

TOPIC	CUPTODIC	SUBTOPIC SPECIFIC OUTCOMES -	CONTENT		
TOPIC	SUBTOPIC		KNOWLEDGE	SKILLS	VALUES
12.10 Electromagnetic induction	12.10.1 The phenomenon of electromagnetic induction.	12.10.1.1 Investigate the phenomenon of electro-magnetic induction.	Electromagnetic induction: (induced EMF / current in a wire moving cutting magnetic flux) Faraday's law	Experimenting the induction of an EMF/current using a magnet, a coil and ammeter	 Asking questions for more understanding Cooperating in group activities
		12.10.1.2 Describe the factors affecting magnitude and direction of induced EMF. 12.10.1.3 State the direction of	 Factors affecting magnitude and direction of induced EMF: speed of either magnet or coil, strength of magnet, number of turns of a coil Direction of induced current: Lenz and 	 Collecting data Organising the data in a table Interpreting the data Analysing the factors that affect the magnitude of the induced current/EMF 	 Participating in group activities actively Knowing the safe rules of experiment
		current produced by an induced EMF.	Fleming right hand law.	Inferring the direction of induced current with Fleming right hand rule	
	12.10.2 The simple A.C. and D.C. generators.	12.10.2.1 Describe simple A.C. and D.C. generators.	Generators: simple A.C. generator (an alternator with slip- rings) and simple D.C. dynamo with a	 Communicating A.C. and D.C. generators Comparing the 	Asking questions for more understanding

12.10.2	12.10.2.2 Compare the simple A.A. generator with a simple D.C. generator in terms of structure and its nature. 12.10.2.3 Describe the action of a diode in rectification. 12.10.2.4 Explain conversion of an A.C. generator to a D.C. generator. 12.10.2.5 Contrast the current produced by the D.C. generator with that produced from batteries.	 Structure and its nature of simple A.C and D.C generators Action of diodetes: change A.C. to D.C. by allowing current to flow one way Conversion of A.C. generator to D.C. generator by use of commutator The direction of Current from D.C generator(varies) and from batteries(constant) 	structure and nature of an A.C. and D.C. generators Communicating rectification of alternating current using diodes Comparing the direction of current produced by a D.C. generator to the one produced from batteries	Cooperating in group activities Participating in group activities actively Appreciating the use of the generators and batteries
12.10.3 Transformers.	12.10.3.1 Demonstrate the principles of mutual induction.	 Principles of mutual induction: changing current in one coil gives rise to current in the other 	Designing investigations to verify mutual induction	Asking questions for more understanding
	12.10.3.2 Describe the structure and	The structure and operation of iron core	Communicating step up and step down	 Cooperating in group activities

operation of iron	transformers	transformers	
core		 Calculating 	 Participating in
transformers.		problems relating	group activities
		to the	actively
12.10.3.3 Apply the	 Equations of 	transformers and	 Appreciating the
transformer and	transformer and	power using	use of the
power equations	power: using	formulae	formula
to solve	relations		 Being aware of
numerical	<u>Vp</u> = <u>Np</u>	 Calculating the 	the
problems	V_s N_s	efficiency of a	environmental
involving ideal	and	transformer	and cost
transformers	$Vp Ip = V_s I_s$	_	implications of
10.10.0.1.0.1.1.1.1		 Communicating 	underground
12.10.3.4 Calculate the	(ideal transformer)	knowledge on	power
efficiency of a	Coloulation of	the	transmission
transformer	Calculation of	environmental	
given data.	efficiency:	and cost	
10 10 2 F Evalois	[Efficiency = (V _s	implications of	
12.10.3.5 Explain	I _s)/(Vp Ip) x 100%]	underground	
advantages of high alternating	- Advantage of high	power	
potential	Advantage of high Advantage of high	transmission	
difference power	alternating potential		
transmission.	difference power transmission: as in		
12.10.3.6 Describe the			
implications of	reducing power losses in cables.		
underground	Environmental and		
power	cost implications of		
transmission	underground power		
compared to	transmission		
overhead lines.	Effects of improper		
12.10.3.7 Describe the	management of		
effects of	Transformers such as		
improper	overheating, low/high		
management of	voltage		
	voltage		<u> </u>

	transformers		

UNIT 11.0 BASIC ELECTRONICS

- Demonstrate an understanding of basic electronics
- Develop investigative skills

TODIC	SUBTOPIC	SPECIFIC		CONTENT	
TOPIC	SUBTOPIC	OUTCOMES	KNOWLEDGE	SKILLS	VALUES
12.11 Basic electronics	12.11.1 Thermionic emission and electrons.	12.11.1.1 Describe What thermionic emission is	Thermionic emission: release of electrons from a heated cathode	Investigating properties of cathode rays by using a CRO	 Asking questions for more understanding
		12.11.1.2 Investigate properties of cathode rays 12.11.1.3 Distinguish between direction of flow of electrons and flow of conventional current. 12.11.1.4 Describe applications of electron beams.	 Properties of cathode rays: e.g. Deflected by electric and magnetic fields, travel in straight in lines etc. Direction of flow of electrons and conventional current Application of electron beams in CRO ,TV set, X-ray machines etc Basic structure and action of CRO: electron gun, Control grid, anode Y-plates ,X-plates, fluorescent 	 Comparing the direction of flow of electrons to conventional current Communicating the devices that make of electron beams in their operation Investigating the basic structure of a CRO. Measuring quantities using a CRO 	 Cooperating in group activities Participating in group activities actively Appreciating the use of the cathode rays in specific devices Being aware of the structure of a CRO Appreciating the use of a CRO in measuring

	12.11.1.5 Describe basic structure and action of cathode-ray oscilloscope. 12.11.1.6 Describe the uses of cathode-ray oscilloscope.	screen • Uses of CRO: e.g. measuring(peak voltage, time, frequency),TV etc		some quantities
12.11.2 Circuit components.	12.11.2.1 Identify symbols of basic circuit component. 12.11.2.2 Determine resistor values using standard colour codes. 12.11.2.3 Describe action of variable potential divider. 12.11.2.4 Explain the	 Circuit components and its symbols: such as resistors, potentiometers, capacitors, thermistors, light dependent resistors, reed switches and relays switches, light emitting diodes etc Values of resistors recognised from the colour bands Action of variable potential divider Action of thermistor (as semi conductor) and application of thermistor and light dependent resistors (sensitive to temperature changes in light intensity) 	 Communicating the basic circuit components Calculating resistance using standard colour codes and values Investigating the variable potential divider Communicating the daily applications of thermistor and light dependent resistors Experimenting the charging and discharging of a capacitor 	 Cooperating in group activities Asking questions for more understanding Participating in group activities actively Appreciating the use of the thermistors and LDRs in devices

action and application of thermistor and light dependent resistors. 12.11.2.5 Investigate the charging and discharging of capacitors.	 Charging and discharging of capacitors: Charging through a resistor when connected to current flow and discharging through a resistor when not connected to current flow. Role of capacitors in electronic equipments: filter circuits ,delay circuits, smoothening rectified current etc 	 Communicating the role played by capacitors in electronic equipments Communicating how reed and relay switches work Comparing the application of reed and relay switches
12.11.2.6 Describe the role of capacitors in electronic equipments. 12.11.2.7 Explain how a reed and relay switches work.	 Works of reed switch and relay switches (by attraction of two iron reeds to switch on / off current and relay switch (as an amplifier) Application of reed and relay switch: alarm bells, starter motor, telephone 	

12.11.3 Simple Electronic Systems.	12.11.2.8 Describe application of reed switch and reed relay. 12.11.3.1 Describe the action of a bipolar transistor. 12.11.3.2 State the different types of logic gates. 12.11.3.3 Demonstrate how to derive the truth tables of logic gates. 12.11.3.4 Describe the use of bistable and astable circuits.	 Action of a bipolar transistor current amplifier: bipolar transistor as used in electronic switches Types of Logic gates: such as NOT, AND, OR, NAND, NOR How to derive the truth tables of logic gates. The Use of c bistable and astable circuits: ross-coupled logic gates. (bistable) in computers for data storage. Astable as pulse generator and the used in clocks that controls operations in a computer 	Communicating the action of a bipolar transistor Communicating different types of logic gates Investigating truth tables of logic gates using numbers of 0 and 1 in inputs and out puts Communicating the use of crosscoupled logic gates Investigating to show how a bistable and abistable work	 Asking questions for more understanding Cooperating in group activities Appreciating the use of the truth tables when dealing with logic gates Participating in group activities actively
------------------------------------	--	--	--	--

UNIT 12.0 ATOMIC PHYSICS

- Demonstrate an understanding about atomic physics
- Develop investigative skills

TOPIC	SUBTOPIC	SPECIFIC OUTCOMES		CONTENT	
TOPIC	SUBTUPIC	SPECIFIC OUTCOMES	KNOWLEDGE	SKILLS	VALUES
12.12. Atomic physic	12.12.1 Nuclear atom	12.12.1.1 Describe the structure of the atom.	Atomic structure (nucleus and electrons)	Communicating an atomic structure	Asking questions for more
S		12.12.1.2 Describe the composition of the nucleus in terms of protons and neutrons. 12.12.1.3 Explain mass number and atomic number.	 Composition of the nucleus (protons and neutrons) Mass number and Atomic number: mass (Nucleon) number, A, and atomic (proton), number, Z. 	Communicating knowledge on the existence of protons and neutrons in the nucleus of an atom	Cooperating in group activities
	12.12.2 Radioactivity.	12.12.2.1 Describe the nature of radioactivity. 12.12.2.2 Describe the characteristics of the three kinds of radioactive radiations: alpha, beta and	 Nature of radioactivity (randomness and spontaneity) Characteristics of three kinds of radioactive radiations: Alpha (α), Beta (β) and Gamma (γ) radiations in terms of penetration, 	 Investigating the nature of radioactivity Investigating radiation using a G.M counter Understanding the causes and 	 Asking questions for more understanding Cooperating in group activities Appreciating the use of a GM counter to detect

gamma.	ionization, deflection, charge, relative mass and nature of particles)	effects of background radiation	radiation
12.12.2.3 Describe methods of detecting radioactive emissions. 12.12.2.4 Explain the origin and effects of	 Detection of radioactive emissions: by G.M tube, photographic plate, scintillation counter, bubble chamber Causes of background radiation (cosmic rays, 	 Comparing nuclear fission to nuclear fusion Calculating half life of a radioactive material by using decay curves 	 Being aware of the existence of background radiation and its effects Appreciating the
background radiations 12.12.2.5 Describe what	radioactive elements under rocks.) Radioactive decay as disintegration of	Communicating the uses of radioactive substances	use decay curves to determine half life
radioactive decay is.	nucleus by alpha, beta and gamma emissions.	Communicating knowledge on safety	Participating in group activities
12.12.2.6 Describe what nuclear fusion and fission is.	Nuclear fusion and fission: Nuclear fusion as process of joining very light nuclei together and fission as splitting process of nucleus	precautions Investigating management practices which safeguard the environment from radioactive contamination	 Applying safety precautions when dealing with radioactive substances
12.12.2.7 Demonstrate how to determine half life of a radioactive material.	Half life of a radioactive material: Time taken for activity to reduce by half of the original substance (Decay curves)	Contamination	Substances
12.12.2.8 Explain uses of radioactive	Uses of radioactive		

substances.	substances: e.g. medical, industrial, agricultural uses	
12.12.2.9 Describe the safety precautions necessary when handling or storing radioactive substances.	Use of protective materials: such as gloves, gogloes, overalls and lead shields	
12.12.2.10. Explain the effects of radioactive substances on the environment and health.	Effect of radioactive substances: such as radiation pollution and health hazards	
12.12.2.11. Investigate management practices which safeguard the environment from radioactive contamination.	Appropriate management safe guard practices	

PRACTICAL PHYSICS

The importance of practical work in Physics cannot be over emphasized. Practical work develops manipulative skills in the learner and gives the learner the opportunity to experiment the scientific method. Needless to mention practical Physics is essential for this syllabus because:

- a) There is need to expose learners to practical applications of Physics.
- b) Learners should understand, interpret and apply scientific methods in a variety of ways including the theoretical and practical approaches.
- c) The study of Physics should be linked with environmental education requirements by quoting local phenomena in relation to Physics studies.

There are scientific processes and skills to which learners must be exposed. Examples of these are observing, experimenting, classifying, measuring, estimating, calculating, predicting and problem solving. Learners should also be exposed to scientific attitude like accuracy, curiosity and creativity.

KEY QUANTITIES, SYMBOLS AND UNITS IN PHYSICS.

The pages 38 - 41 comprise the symbols and units which may from time to time be used during the study of Physics.

The candidate is expected to have the knowledge of how to apply the symbols and units in physics.

The list is not exhaustive; therefore the teacher and the learner are expected to discover more as they go through this course.

LIST OF SUGGESTED APPARATUS AND EQUIPMENT FOR THE SYLLABUS

1.0 Measurements and Mechanics

Venier callipers, micrometer screw gauges, measuring cylinders, metre rules, displacement cans, beakers, conical flasks, different masses such as 50g, 100g, 200g, 1kg, ticker tape timers, pipettes, burettes, spring balances, beam balances, capillary tubes and pulleys.

2.0 Thermal physics

Mercury barometers, clinical and laboratory thermometer, six's maximum and minimum thermometers, manometers, calorimeter, thermos flasks, thermocouple thermometers and hypsometer.

3.0 Light

Plane mirrors, converging and diverging lenses, rectangular and triangular prisms, optical pins, colour discs, colour filters, optical camera, light ray boxes, coloured bulbs, projectors such as slide projectors and film projectors.

4.0 Sound

Sonometers, turning forks, stop watches, stop clocks, sources of sound such as guitars and drums.

5.0 Magnetism

Bar magnets, horseshoe magnets, iron and steel bars, iron filings and plotting compasses.

6.0 Wave motion

Ripple tanks, springs and spiral springs, ropes and strings.

7.0 Electric current/static electricity

Ammeters, voltmeters, rheostats, capacitors, connecting wires, lead-acid accumulators, dry cells, resistors, tapping keys, switches, fuses, semi-conductors, semi-conductor diodes, electric bells, resistance wires, ebonite and polythene rods, three-pin-plugs, electric bulbs, switch boards and gold leaf electroscopes.

8.0 Basic electronics

Cathode ray tubes, maltese cross tube, resistors, light dependant rays (LDRs), thermistors, diodes, capacitors, transistors, TV sets, radios, electronics teaching kits and computers.

9.0 Nuclear physics

Geiger muller tube, time scales, rate metres, cloud chambers, bubble chamber alpha emitting radioactive sources and extra high tension (EHT) power supply unit.

KEY QUANTITIES, SYMBOLS AND UNITS.

Quantity	Symbols	Unit	
mass	m	kg	
length	1	m	
time	t	S	
electric current	I	A	
thermodynamic temperature	T	K	

amount of substance	n	mol
distance	d	m
displacement	S, X	m
area	A	m^2
volume	V	m^3
density	ρ	kgm ⁻³
speed	u, v	ms ⁻¹
velocity	u, v	ms ⁻¹
acceleration	a	ms ⁻²
acceleration of free-fall	g	ms ⁻²
force	F	N
weight	W	N
momontum	P	No
momentum		Ns
work	wW	J
energy	E, U, W	J
potential energy	Ep	J
kinetic energy	Ek	J
heat energy	Q	J
change of internal-energy	$\Delta \mathrm{U}$	J
power	P	W
pressure	P	Pa
torque	T	Nm
gravitational constant	G	$Nkg^{-2}ms^2$
period	T	S
frequency	f	Hz
wave length		
	λ	m
speed of electromagnetic-waves	λ c	m ms ⁻¹

Avogadro constant number	N_A	mol^{-1}
Celsius temperature	θ	$^{\circ}\mathrm{C}$
half - life	t½	S
decay constant	λ	s^{-1}
specific heat capacity	c	$JK^{-1}KG^{-1}$
electromotive force	E	V
resistance	R	Ω
resistivity	ρ	Ω m

DATA AND FORMULAE

$C = 3.00 \text{ x } 10^8 \text{ ms}^{-1}$
$e = 1.60 \times 10^{-19} _{-}^{1} \text{ coulomb}$
$h = 6.63 \times 10^{-34} \text{ Js}$
$R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$
$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$
$G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^2$
$g = 9.81 \text{ ms}^{-2}$
$k = 1.38 \times 10^{-23} \text{ JK}^{-1}$
$s = ut + \frac{1}{2} at^2$
or $v^2 = u^2 + 2as$
$W = P\Delta V$
$E_p = mgh$
$E=mc^2$

refractive index $n = \underline{\sin i}$

sin r

resistors in series $R = R_1 + R_2 + R_3 + \dots$

resistors in parallel $\underline{1} = \underline{1} + \underline{1} + \underline{1} + \dots + \underline{1}$

R R_1 R_2 R_3

electric potential $V = Q/4\pi\epsilon_0 r$

capacitors in series $\underline{1} = \underline{1} + \underline{1} + \underline{1} + \underline{1} + \dots$

C C_1 C_2 C_3

capacitors in parallel $C = C_1 + C_2 + C_3 +$

pressure of an ideal gas $P = \underline{1} \quad \underline{NMC}^3$

3 V

alternating current/voltage $X = x_0 \sin wt$

hydrostatic pressure $P = \rho gh$

energy of charged capacitor $w = \frac{1}{2}QV$

radio-active decay $x = x_0 \exp(-\lambda t)$

decay constant $\lambda = \underline{0.693}$

 $t^{1/2}$